Abstract

Step-scheme (S-scheme) AgI decorated Ta2O5-x heterojunctions have been designed and synthesized via a combination of solvothermal and chemical deposition methods for enhanced visible-light harvesting and high-performance photocatalysis. The AgI nanoparticles showed great influences on the visible-light absorption and charge separation between AgI and Ta2O5-x microspheres. The experimental results indicated that the as-prepare AgI/Ta2O5-x composites achieved enhanced photocatalytic performance towards tetracycline degradation under visible light, and the AgI/Ta2O5-x-11 sample displayed the highest photocatalytic performance and the maximum rate constant of approximately 0.09483 min−1, which was 7.22 times that of Ta2O5-x microspheres and 2.56 times that of AgI, respectively. The highly enhanced photocatalytic performance was mainly attributed to the construction of S-scheme heterostructure and formation of oxygen vacancies in Ta2O5-x microspheres. In addition, the trapping experimental and DMPO spin-trapping ESR spectra confirmed the ⸱O2− and ⸱OH species as the main radicals during tetracycline degradation. Current work indicates an S-scheme tantalum-based composites for high-performance environmental photocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call