Abstract

Dielectric elastomers (DE) are ideal electro-active polymers with large voltage-induced deformation for the design and realization of soft machines. Among the diversity of configurations of DE-based soft machines, dielectric elastomer minimum energy structures (DEMES) are unique due to their ease of fabrication, readiness to extend into multiple segments, and versatility of design configurations. Despite many successful demonstrations of DEMES actuators, these DEMES devices are limited to immobile use. We report several possible implementations of soft mobile machines through the combination of DEMES design, finite element simulation, and experiment. Our designs mimic the biomimetic locomotion of inchworms and marry complex components such as ratchet wheels with soft DEMES actuators. We even elucidate that buckling of DE can be harnessed to achieve asymmetric feet, which is otherwise realized via more complicated means. The examples presented here enrich DE devices’ design and provide valuable insights into the design and fabrication of soft machines that other soft-active materials enable. All the codes and files used in this paper can be downloaded from GitHub.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call