Abstract

In recent years, the number and scale of environmental citizen science programmes that involve lay people in scientific research have increased rapidly. Many of these initiatives are concerned with the recording and identification of species, processes which are increasingly mediated through digital interfaces. Here, we address the growing need to understand the particular role of digital identification tools, both in generating scientific data and in supporting learning by lay people engaged in citizen science activities pertaining to biological recording communities. Starting from two well-known identification tools, namely identification keys and field guides, this study focuses on the decision-making and quality of learning processes underlying species identification tasks, by comparing three digital interfaces designed to identify bumblebee species. The three interfaces varied with respect to whether species were directly compared or filtered by matching on visual features; and whether the order of filters was directed by the interface or a user-driven open choice. A concurrent mixed-methods approach was adopted to compare how these different interfaces affected the ability of participants to make correct and quick species identifications, and to better understand how participants learned through using these interfaces. We found that the accuracy of identification and quality of learning were dependent upon the interface type, the difficulty of the specimen on the image being identified and the interaction between interface type and ‘image difficulty’. Specifically, interfaces based on filtering outperformed those based on direct visual comparison across all metrics, and an open choice of filters led to higher accuracy than the interface that directed the filtering. Our results have direct implications for the design of online identification technologies for biological recording, irrespective of whether the goal is to collect higher quality citizen science data, or to support user learning and engagement in these communities of practice.

Highlights

  • The relationship between science and society and the existing knowledge divide between expert and lay knowledge continues to be subject of extensive debate (Mooney, Duraiappah & Larigauderie, 2013; Deshpande, Bhosale & Londhe, 2017)

  • We study the differential affordances of alternative digital interfaces for biological recording, whereby the interface acts as the first realm of development of interactional expertise

  • Accuracy Our first hypothesis (H1) was that species identification accuracy is influenced by interface design, with interactive keys resulting in more accurate identifications than a field guide design, and with easier images resulting in higher accuracy than difficult images regardless the interface used

Read more

Summary

Introduction

The relationship between science and society and the existing knowledge divide between expert and lay knowledge continues to be subject of extensive debate (Mooney, Duraiappah & Larigauderie, 2013; Deshpande, Bhosale & Londhe, 2017). The rapid advancement of computing technologies—especially mobile computing and the Internet—has led to the emergence of a large number of citizen science projects in a wide range of domains, including astronomy (e.g. classifying shapes of galaxies, (Raddick et al, 2010)), medical sciences (e.g. contributions to protein engineering for drug discovery; Cooper et al, 2010 and cancer diagnostics; Schrope, 2013) and environmental sciences (e.g. obtaining biological records through identification of plant or animal species on images captured by camera traps; Swanson et al, 2016 or by volunteers; Silvertown et al, 2015) Through initiatives of this kind, digital technologies have created new opportunities for engagement by a much wider range of people with both the products and processes of scientific research. The role of the public has changed from being simple ‘recipients’ of scientific developments to acting as contributors to research, for example, by helping to collect and categorise data for scientific projects (Silvertown, 2009)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call