Abstract

Lithium-ion batteries have been a mainstay of the consumer electronics industries for nearly 25 years. Unlike many older energy storage systems, lithium-ion does not describe a specific chemistry but a family of chemistries and a mechanism of operation. As a result numerous types of materials are under the umbrella of lithium-ion batteries that can be modified and developed to meet a variety of end-user goals. Looking beyond-lithium ion, the landscape is less understood and explored. One of our research efforts is to look at non-lithium cation based energy storage chemistries, including the MgxV2O5 and MgxV2O5*H2O systems. This talk will focus on recent developments from our lab in Mg-ion and Ca-ion chemistries with highlighting new types of cathodes, electrolytes, and anode materials1-5 References (1) Lipson, A.L; Han, S.-D; Kim, S. Pan, BF; Sa, N.; Liao; C, Fister, TT; Burrell, AK; Vaughey, JT; Ingram, BJ J. Power Sources 325 646-652 (2016). (2) Sa, N; Wang, H; Proffit, DL; Lipson, AL; Key, B; Liu, M; Feng, ZX; Fister, TT; Ren, Y; Sun, CJ; Vaughey, JT; Fenter, PA; Persson, KA; Burrell, AK J. Power Sources 323 44-50 (2016). (3) Sa, N; Kinnibrugh, TL; Wang, H; Gautam, GS; Chapman, KW; Vaughey, JT; Key, B; Fister, TT; Freeland, JW; Proffit, DL; Chupas, PJ; Ceder, G; Bareno, JG; Bloom, ID; Burrell, AK Chemistry of Materials, 28(9) 2962-2969 (2016). (4) Lipson, AL; Han, SD; Pan, B; See, KA; Gewirth, AA; Liao; Vaughey, J; Ingram, BJ J. Electrochem. Soc., 163(10) A2253-A2257 (2016). (5) Mukherjee, A.; Sa, N.; Phillips, P.; Burrell, AK; Vaughey, JT; Klie, R. Chemistry of Materials, 29, 2218−2226 (2017). Figure 1

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call