Abstract

In cryptographic algorithms, random sequences of longer period and higher nonlinearity are always desirable in order to increase resistance against cryptanalysis. The use of chaotic maps is an attractive choice as they exhibit properties that are suitable for cryptography. In continuous phase space of the logistic map, proper control parameters and initial state result into aperiodic trajectories. However, when the phase space of the logistic map is quantized, the trajectories terminate in finite and stable periodic orbits due to quantization error. The dynamic degradation of the logistic map can be mitigated using nonlinear feedback and cascading multiple chaotic maps. We propose a logistic map-based, finite precision multi-dimensional logistic map, that incorporates nonlinear feedback and modulus operations to perturb the chaotic trajectories. We present complexity, average cycle length and randomness analysis to evaluate the proposed method. The simulation results and analysis reveal that the proposed MDLM approach achieves longer period and higher randomness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.