Abstract

Because of the mixing and aperiodic properties of chaotic maps, such maps have been used as the basis for pseudorandom number generators (PRNGs). However, when implemented on a finite precision computer, chaotic maps have finite and periodic orbits. This manuscript explores the consequences finite precision has on the periodicity of a PRNG based on the logistic map. A comparison is made with conventional methods of generating pseudorandom numbers. The approach used to determine the number, delay, and period of the orbits of the logistic map at varying degrees of precision (3 to 23 bits) is described in detail, including the use of the Condor high-throughput computing environment to parallelize independent tasks of analyzing a large initial seed space. Results demonstrate that in terms of pathological seeds and effective bit length, a PRNG based on the logistic map performs exponentially worse than conventional PRNGs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.