Abstract

AbstractIn dense flowing bidisperse particle mixtures varying in size or density alone, smaller particles sink (percolation‐driven) and lighter particles rise (buoyancy‐driven). But when particle species differ from each other in both size and density, percolation and buoyancy can either enhance (large/light and small/heavy) or oppose (large/heavy and small/light) each other. In the latter case, a local equilibrium can exist in which the two mechanisms balance and particles remain mixed: this allows the design of minimally segregating mixtures by specifying particle size ratio, density ratio, and mixture concentration. Using DEM simulations, we show that mixtures specified by the design methodology remain relatively well‐mixed in heap and tumbler flows. Furthermore, minimally segregating mixtures prepared in a fully segregated state in a tumbler mix over time and eventually reach a nearly uniform concentration. Tumbler experiments with large steel and small glass particles validate the DEM simulations and the potential for designing minimally segregating mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call