Abstract

To process the solid particulates in fluidized bed and slurry phase reactors, attrition is an inevitable consequence and is therefore one of the preliminary parameters for the catalyst design. In this paper, the mechanical degradation propensity of the zeolite catalysts (particles) was investigated in a bimodal distribution environment using a Gas Jet Attrition — ASTM standard fluidized bed test (D-5757). The experimentation was conducted in order to explore parameters affecting attrition phenomena in a bimodal fluidization. In a bimodal fluidization system, two different types of particles are co-fluidized isothermally. The air jet attrition index (AJI) showed distinct increases in the attrition rate of small particles in a bimodal fluidization environment under standard operating conditions, in comparison with single particle. A series of experiments were conducted using particles of various sizes, with large particles of different densities and sizes. Experimental results suggest that the relative density and particle size ratio have a significant influence on attrition behavior during co-fluidization. Therefore a generalized relationship has been drawn using Gwyn constants; those defined material properties of small particles. Moreover, distinct attrition incremental phenomenon was observed during co-fluidization owing to the change in collision pattern and impact, which was associated with relative particle density and size ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call