Abstract

Abstract Bubble plumes are a popular hypolimnetic reaeration technique in deep-water reservoirs since they have the advantage of delivering direct reaeration to the hypolimnion. Improving the understanding of the integrated reaeration processes is beneficial to optimize the reaeration capacity of the aeration or oxygenation system. In this study, the discrete bubble model was first employed to design an oxygenation system for a sub-deep reservoir (the Aha Reservoir, southwest China, with water depths of 10–30 m). A new approach involving the discrete bubble model was used to determine the initial bubble size of the bubble plume applied. The intrusion models were demonstrated to be useful for designing the gas flow rate of the reaeration system. Using the intrusion models, we predicted the intrusion thickness and intrusion distance during operation for the first time. Subsequently, we verified the predictions and produced more realistic empirical formulas. At present, reports about recommendations on initial bubble size and gas flow rate are rare, and practical verification is absent. Taking the Aha Reservoir as an example, the initial bubble radius of 1 mm and the gas flow rate of 20 m3·h−1 were recommended for bubble plume oxygenation and were found to be successful in the field. Our understanding of the reaeration processes during the operation of the bubble plume system is far from comprehensive, but this study serves to highlight the potential of the discrete bubble model and the intrusion models for designing a bubble plume system in an individual lake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.