Abstract
Crossbar switches frequently function as the internal switching fabric of high performance network switches and routers. However, for fairness and high utilization, a crossbar needs an intelligent, centralized scheduler. We describe the design and implementation of a scheduling algorithm for configuring crossbars in input queued switches that support virtual output queues and multiple priority levels of unicast and multicast traffic. We carried out this design for Stanford University's Tiny Tera prototype, a fast, label-swapping packet switch. Its scheduler, designed to configure a crossbar once every 51 ns, implements the ESLIP scheduling algorithm, which consists of multiple round-robin arbiters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.