Abstract

The advent of metasurfaces has revolutionized the design of optical instruments, and recent advancements in fabrication techniques are further accelerating their practical applications. However, conventional top-down fabrication of intricate nanostructures proves to be expensive and time-consuming, posing challenges for large-scale production. Here, we propose a cost-effective bottom-up approach to create nanostructure arrays with arbitrarily complex meta-atoms displaying single nanoparticle lateral resolution over submillimeter areas, minimizing the need for advanced and high-cost nanofabrication equipment. By utilizing air/water interface assembly, we transfer nanoparticles onto templated polydimethylsiloxane (PDMS) irrespective of nanopattern density, shape, or size. We demonstrate the robust assembly of nanocubes into meta-atoms with diverse configurations generally unachievable by conventional methods, including U, L, cross, S, T, gammadion, split-ring resonators, and Pancharatnam-Berry metasurfaces with designer optical functionalities. We also show nanocube epitaxy at near ambient temperature to transform the meta-atoms into complex continuous nanostructures that can be swiftly transferred from PDMS to various substrates via contact printing. Our approach potentially offers a large-scale manufacturing alternative to top-down fabrication for metal nanostructuring, unlocking possibilities in the realm of nanophotonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.