Abstract

In order to eliminate multiple coexisting pollutants in environmental wastewater, a magnetic three-dimensional hierarchical porous flower-like N, Co-doped graphitic carbon nano-polyhedra decorated NiCo-layered double oxides (N-Co@C/NiCo-LDOs) adsorption material was synthesized, which consisted of two-dimensional LDOs nanosheets with functionalized surfaces (N, Co-doped graphitic carbon loaded on both sides of NiCo-LDOs nanosheets). The adsorption properties of N-Co@C/NiCo-LDOs for five types of typical pollutants (cationic dyes: rhodamine b, methylene blue; pesticides: ethofenprox, bifenthrin; anionic dyes: methyl orange, congo red; inorganic cations: Cr2+, Cd2+, Pb2+, Zn2+, inorganic anions: Cr2O72−, AsO33−) were investigated systematically in single and coexisting systems. Combined with the results of FTIR and zeta potential, the adsorption mechanism was discussed. By virtue of its hierarchical porous architecture and the combined effect of functionalized surfaces and LODs supporter, the as-prepared N-Co@C/NiCo-LDOs demonstrates excellent adsorption performance towards five types of typical pollutants with fast adsorption rate, high adsorption capacity and good co-adsorption performance. More importantly, the N-Co@C/NiCo-LDOs showed satisfactory removal efficiency, stability and reusability in model wastewater. The broad-spectrum, rapid, easily separable, and reusable adsorption properties make N-Co@C/NiCo-LDOs promising for highly efficient wastewater treatments. This work also provides a feasible way for the preparation of adsorption materials for the treatment of complex wastewater systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call