7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1002/bio.4835
Copy DOIPublication Date: Jul 1, 2024 |
In this study, we developed a new fluorescence "on-off-on" sensor utilizing water-soluble cobalt/zinc-nitrogen co-doped graphene quantum dots (Co/Zn-N-GQDs) to recognize quinalphos pesticide in vegetable and fruit samples. Primarily, the synthesis method employed a one-pot hydrothermal approach, using betel leaves as a natural precursor and cobalt ("Co"), zinc ("Zn"), and urea ("N") as dopant sources. The Co/Zn-N-GQDs probes underwent comprehensive analytical characterization. The Co/Zn-N-GQDs were synthesized with a remarkable luminescence yield of 31.49%, exhibiting excitation at 320 nm and emission peak at 393 nm. Interestingly, the luminescence of Co/Zn-N-GQDs was selectively "Turned Off" by Cu2+ via a static quenching setup. Remarkably, quenched fluorescence was surprisingly reactivated upon adding quinalphos to the quench setup, indicating a direct correlation between luminescence reactivation and quinalphos concentration. Briefly, this phenomenon is ascribed to the functional groups in quinalphos, such as quinoxalinyl and phosphorothioate, which chelate with Cu2+ ions, disrupting the nonfluorescent Cu2+-Co/Zn-N-GQDs complex. The design sensor demonstrated a limit of detection (LOD) of 0.11 μM and a broad linear span of 0.5 to 200 μM. In conclusion, Cu2+-Co/Zn-N-GQDs sensor showed immediate applicability, stability, and reproducibility, making it highly effective for quinalphos sensing in various samples.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.