Abstract

A novel high-resolution x-ray spectrometer for point-like emission sources has been developed using a crystal shape having both a variable major and a variable minor radius of curvature. This variable-radii sinusoidal spiral spectrometer (VR-Spiral) allows three common spectrometer designgoals to be achieved simultaneously: 1. reduction of aberrations and improved spectral (energy) resolution, 2. reduction of source size broadening, and 3. use of large crystals to improve total throughput. The VR-Spiral concept and its application to practical spectrometer designare described in detail. This concept is then used to designa spectrometer for an extreme extended x-ray absorption fine structure experiment at the National Ignition Facility looking at the Pb L3 absorption edge at 13.0352 keV. The expected performance of this VR-Spiral spectrometer, both in terms of energy resolution and spatial resolution, is evaluated through the use of a newly developed raytracing tool, xicsrt. Finally, the expected performance of the VR-Spiral concept is compared to that of spectrometers based on conventional toroidal and variable-radii toroidal crystal geometries showing a greatly improved energy resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call