Abstract

Controllable integration of nanoparticles (NPs) and metal–organic frameworks (MOFs) is crucial for expanding the applications of MOF-based materials. In this study, we demonstrate the facile encapsulation of presynthesized NPs into carboxylic acid based MOFs using NPs@metal oxide core–shell nanostructures as the self-template. The shell dissolved gradually in the mildly acidic growth solution created by dissociation of the ligands and thus directing the growth of the MOF crystals by providing metal ions. With protection of the metal oxide shell, various NPs (Au NPs, Au nanorods, Pd nanocubes, and Pt-on-Au dendritic NPs) could be encapsulated easily without being aggregated or dissolved in the reaction mixture. Importantly, instead of forming the exact replicate of the self-template, the obtained NP@MOF heterostructures exhibited a yolk–shell morphology with a central cavity and a certain degree of mesoporosity. The formation of the well-defined yolk–shell structure was demonstrated to be dependent on both...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.