Abstract
Optical properties of heterostructures composed of layered 2D materials, such as transition metal dichalcogenides (TMDs) and graphene, are broadly explored. Of particular interest are light-induced energy transfer mechanisms in these materials and their structural roots. Here, we use state-of-the-art first-principles calculations to study the excitonic composition and the absorption properties of WS2–graphene heterostructures as a function of interlayer alignment and the local strain resulting from it. We find that Brillouin zone mismatch and the associated energy level alignment between the graphene Dirac cone and the TMD bands dictate an interplay between interlayer and intralayer excitons, mixing together in the many-body representation upon the strain-induced symmetry breaking in the interacting layers. Examining the representative cases of the 0° and 30° interlayer twist angles, we find that this exciton mixing strongly varies as a function of the relative alignment. We quantify the effect of these structural modifications on exciton charge separation between the layers and the associated graphene-induced homogeneous broadening of the absorption resonances. Our findings provide guidelines for controllable optical excitations upon interface design and shed light on the importance of many-body effects in the understanding of optical phenomena in complex heterostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.