Abstract

Chirped pulse amplification (CPA) and subsequent nonlinear optical (NLO) systems constitute the backbone of myriad advancements in semiconductor manufacturing, communications, biology, defense, and beyond. Accurately and efficiently modeling CPA+NLO-based laser systems is challenging because of the complex coupled processes and diverse simulation frameworks. Our modular start-to-end model unlocks the potential for exciting new optimization and inverse design approaches reliant on data-driven machine learning methods, providing a means to create tailored CPA+NLO systems unattainable with current models. To demonstrate this new, to our knowledge, technical capability, we present a study on the LCLS-II photo-injector laser, representative of a high-power and spectro-temporally non-trivial CPA+NLO system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.