Abstract
Geo-synthetic reinforced soil retaining wall (GRS-RW) combined with a Gravity Retaining wall (GRW) facing or Full High Rigid (FHR) facing is a new type of retaining wall. This type of retaining wall is used to get full advantages of GRW and reinforced soil retaining wall (RS-RW) and to avoid their drawbacks. The design method based on the principle of working strain considers the backfill in the limit state but the reinforcement not in the limit state; while in traditional design method based on the tensile strength of reinforcement, consider both backfill and reinforcements in the limit state and it cannot reflect the influence of reinforcement stiffness. In this paper, numerical analyses were performed to evaluate the stress and strain of both reinforcement and backfill. From the analyses, deformation of the retaining wall, the working performance of GRS-RW with GRW facing, and contribution of geo-grids to GRS-RW with a GRW facing, were evaluated. Analyses are performed for determining the force between GRS-RW with a GRW facing and reinforced soil. Analytical methods, for the calculation of soil pressure acting on the back of GRW, based on the principle of working stress are obtained by comparative analysis between the working performance characteristics of common GRS-RW and GRS-RW with GRW facing. A new analytical method for determining the force between GRS-RW with a GRW facing and reinforced soil “E” is proposed. By comparative study between theoretical and numerical analysis results, method 1 and method 2 are recommended for determining the “E”. A method for determining the tension in the reinforcement of GRS-RW with a GRW facing based on the principle of working strain is also presented in this paper.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have