Abstract
Metamaterial surfaces (metasurfaces) with a low effective index of refraction have been recently proposed for application in the design of hybrid-mode horn antennas, such as soft and hard horns. Here we explore designs of several metasurfaces and their use as liners for coating the interior walls of horn antennas. The design process combines the genetic algorithm optimization technique with a full-wave electromagnetic solver to create dispersion-engineered metamaterials that possess customized surface impedance properties. A metamaterial parameter extraction technique is developed and employed in the optimization process, which is based on the surface impedance expressions for a homogeneous slab backed by a perfectly conducting ground plane illuminated at near grazing incidence. The optimized metasurface is found to be equivalent to a low index metamaterial with a dispersion that can improve the performance of conventional horn antennas over the entire Ku -band while introducing negligible losses. We conclude with a numerical study of a conical horn antenna whose interior is lined with a low index metasurface. The far-field radiation patterns and aperture field distributions confirm hybrid-mode operation over a wide bandwidth, validating the proposed metasurface design methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.