Abstract

Acute pancreatitis (AP) is a potentially life-threatening illness characterized by an exacerbated inflammatory response with limited options for pharmacological treatment. Here, we describe the rational development of a library of soluble epoxide hydrolase (sEH) inhibitors for the treatment of AP. Synthesized compounds were screened in vitro for their sEH inhibitory potency and selectivity, and the results were rationalized by means of molecular modeling studies. The most potent compounds were studied in vitro for their pharmacokinetic profile, where compound 28 emerged as a promising lead. In fact, compound 28 demonstrated a remarkable in vivo efficacy in reducing the inflammatory damage in cerulein-induced AP in mice. Targeted metabololipidomic analysis further substantiated sEH inhibition as a molecular mechanism of the compound underlying anti-AP activity in vivo. Finally, pharmacokinetic assessment demonstrated a suitable profile of 28 in vivo. Collectively, compound 28 displays strong effectiveness as sEH inhibitor with potential for pharmacological AP treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.