Abstract

Ganglioside GM1 is a glycosphingolipid found on mammalian cell membranes, and it is involved in ischemic encephalopathy, spinal cord injury and neurodegenerative diseases. Fatty acids, as a structure module of GM1, have been reported to affect its physiological function and neurite growth activity. Due to the limitation of preparation methods, the function of GM1 derivatives containing different fatty acids in nerve cells has not been systematically studied. To discover novel GM1 derivatives as nerve growth-promoting agents, we developed an efficient SA_SCDase enzymatic synthetic system of GM1 derivatives, yielding twenty GM1 derivatives with unsaturated fatty acid chains in high total yields (16–67%). Subsequently, the neurite outgrowth activities of GM1 derivatives were assessed on Neuro2a Cells. Among all the GM1 derivatives, GM1 (d18:1/C16:1) induced demonstrably neurite outgrowth activity. The subsequent RNA-sequencing (RNA-seq) and Western blot analysis was then performed and indicated that the mechanism of nerve cells growth involved cholesterol biosynthesis regulation by up-regulating SREBP2 expression or ERBB4 phosphorylation to activate the PI3K-mTOR pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.