Abstract

The synthesis of some new quinoxaline derivatives (IVa–n) and their structure determination using 1H NMR, 13C NMR and mass spectral analysis was described herein. The in vitro anti-cancer activity of the these compounds (IVa–n) revealed that the compound1-((1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVd) has shown promising activity, whereas, compounds 1-((1-phenyl-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVa), 1-(tetrazolo[1,5-a]quinoxalin-4-yl)-2-((1-(m-tolyl)-1H-1,2,3-triazol-4-yl)methyl)pyrazolidine-3,5-dione (IVb), 1-((1-(3,5-dimethoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVh) and 1-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-(tetrazolo[1,5-a]quinoxalin-4-yl)pyrazolidine-3,5-dione (IVi) exhibited good to moderate activity against four human cancer cell lines such as HeLa, MCF-7, HEK 293T, and A549 as compared to the doxorubicin. Predominantly, the compound displayed excellent activity over HeLa, MCF-7, HEK 293T, and A549 with IC50 values of 3.20 ± 1.32, 4.19 ± 1.87, 3.59 ± 1.34, and 5.29 ± 1.34 μM, respectively. Moreover, molecular docking studies of derivatives (IVa–n) on EGFR receptor suggested that the most potent compound strongly binds to protein EGFR (pdbid:4HJO) and the energy calculations of in silico studies were also in good agreement with the obtained IC50 values.Supplementary InformationThe online version contains supplementary material available at 10.1134/S1068162022030220.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call