Abstract
ABSTACT The medicinal properties of genetic drugs are highly dependent on the design of delivery systems. Ionizable cationic lipids are considered core materials in delivery systems. However, there has not yet been a widespread consensus on the relationship between the wide diversity of lipid structure design and gene delivery efficiency. The aims of the research work were to synthesize ionizable cholesterol derivatives (iChol-lipids) and to evaluate their potential applications as gene delivery vector. A series of iChol-lipids with different head groups were synthesized with carbamate bond spacer. The chemical structures were characterized by 1H NMR, MS, melting range, and pK a. The interactions between iChol-lipids and MALAT1-siRNA were studied by molecular dynamics simulations and compared with market available DC-Chol, which revealed that hydrogen bonds, salt-bridge, and electrostatic interaction were probably involved. The self-assemble behaviors of these lipids were intensively investigated and evaluated by dynamic laser scattering in the presence of different helper lipids and PEGylated lipids. Their plasmid binding ability, transfection efficiency, hemolytic toxicity, and cytotoxicity were fully studied. IZ-Chol-LNPs was proved to be highly potential to effectively complex with DNA, and endosome escape mechanisms mediated by proton sponge effect was verified by pH-sensitive fluorescence probe BCFL.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have