Abstract

Compounds with a pyrrolidine scaffold play an important role in organic synthesis and especially in the synthesis of bioactive organic compounds, therefore, the development of new methods for modifying this scaffold is a very interesting framework of this study. We developed a rational approach for the synthesis of 1,2,3-trazolylchalcone substituted pyrrolidines derivatives, which were then examined using a variety of spectroscopic techniques such as 1H NMR, 13C NMR, FT-IR, mass spectroscopy and elemental analysis. Biological profiles showed that compounds 5e, 5h had better antibacterial inhibitory potency against S. aureus, E. coli with zone of inhibition 34 ± 0.1, 33 ± 0.3 mm, whereas 5a, 5e showed potent antifungal activity against C. parapsilosis, A. flavus with dimeter zone of inhibition 26 ± 0.2, and 30 ± 0.2 mm respectively. Among the tested compounds 5b, and 5h were the most potent antitubercular activity against Mycobacterium tuberculosis H37Rv and showing MIC values 5.23 µg/mL, 6.85 µg/mL respectively, which are similar activity that of the standard Streptomycin (MIC = 5.02 µg/mL). The binding mode for compound 5 inside the catalytic pocket of M. tuberculosis cytochrome P450 CYP121A1 and produced a network of hydrophobic and hydrophilic interactions (6GEO). From docking results, 5b demonstrated highly stable binding amino acids SerA:237, ArgA:386, ArgA:286, CysA:345, MetA:62, GlnA:385, AspA:282, PheA:280, LeuA:284, ValA:83, ProA:285, AlaA:337, HisA:343, AsnA:74, and ThrA:65, which are plays a crucial role in ensuring efficient binding of the ligand in a crystal structure of tubercular receptor. Furthermore, the physicochemical and ADME (absorption, distribution, metabolism, and excretion) filtration molecular properties, estimation of toxicity, and bioactivity scores of these scaffolds were evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call