Abstract

A series of novel NBP-TMP hybrids with neuroprotective effects were designed and synthesized for the treatment of ischemic stroke. The anti-cerebral ischemic activity of these compounds was screened by evaluating their neuroprotective effects on the oxygen glucose deprivation/reperfusion (OGD/R)-induced SH-SY5Y cell injury model in vitro. Nine compounds 7e, 7h-7i, 7k, 7m-7p and 7r showed better activities on cell viability and LDH levels compared to NBP at the concentration of 6.25 μM. Among them, compound 7m showed the best potency with a percentage of protection 90.2 % compared to NBP (69.2 %) and other compounds. Preliminary structure-activity analysis revealed that the introduction of iodine and N-methylpiperazine groups could significantly improve the neuroprotective effect. Further mechanism research showed that compound 7m could reduce the damage to neuronal mitochondria caused by OGD/R by reducing ROS and increasing mitochondrial membrane potential (MMP), and reduce the apoptosis and necrosis of neurons to play a neuroprotective role. In addition, 7m could regulate the levels of mitochondrial apoptosis pathway-related proteins Bcl-2, Bax, and caspase 3. Finally, in vivo experiments showed that the compound 7m significantly inhibited ischemia-reperfusion injury and cerebral blood flow in rats, and showed a more significant neuroprotective effect than the positive drug NBP at a dose concentration of 20 mg/kg. In conclusion, our results suggest that 7m may be used as a novel lead compound for the future development of anti-cerebral ischemic agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call