Abstract

With increasing health awareness of the pathogenic effects of disease-causing microorganisms, interest in and use (of medical textiles, disinfectants in medical devices, etc.) of antimicrobial substances have increased in various applications, such as medical textiles and disinfectants (alcohol-based and nonalcoholic), in medical devices There are several concerns with alcohol-based disinfectants, such as surface deformation of medical devices due to high alcohol content and damage to skin tissue caused by lipid and protein denaturation of cell membranes. Quaternary ammonium compounds (quats) were preferred because they have the potential to prepare water-based disinfectants. In this study, novel (3-chloropropyl)triethoxysilane (CPTMO) and (3-chloropropyl)triethoxysilane (CPTEO) based quaternary ammonium silane compounds (silane-quats) were developed using quats with carbon chain lengths of C12, C14, C16 and C18. Titration (ASTM D2074) was used to calculate the yield of the synthesis and the structures of the products were characterised by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (13C NMR, 1H NMR) and gas chromatography-mass spectrometry (GC–MS).The in vitro antimicrobial activity of the synthesized samples was evaluated against Gram-positive (Staphylococcus aureus (S. aureus), Enterococcus hirae (E. hirae)) and Gram-negative (Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa)) bacteria and fungi (Candida albicans (C. albicans), Aspergillus brasiliensis (A. brasiliensis)) using the minimum inhibitory concentration (MIC) test. According to MIC tests, the silane-quats with the highest antimicrobial effects were dimethylhexadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (SQ3), which had an MIC of < 16 μg/ml (ppm) against E. coli, S. aureus, E. hirae, C. albicans, and A. brasiliensis and 32 μg/ml against P. aeruginosa. The MIC test results also showed antimicrobial activity at least 2 times greater than that of the commercially available disinfectant benzalkonium chloride (BAC). Findings suggest that SQ3 (C16) holds promise as an effective medical disinfectant, presenting a novel approach to combating microbial infections in healthcare settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.