Abstract

A series of 2- and 3-substituted indolequinone phosphoramidate prodrugs targeted to DT-diaphorase (DTD) have been synthesized and evaluated. These compounds are designed to undergo activation via quinone reduction by DTD followed by expulsion of the phosphoramide mustard substituent from the hydroquinone. Chemical reduction of the phosphoramidate prodrugs led to rapid expulsion of the corresponding phosphoramidate anions in both series of compounds. Compounds substituted at the 2-position are excellent substrates for human DTD (k(cat)/K(M) = (2-5) x 10(6) M(-1) s(-1)); however, compounds substituted at the 3-position are potent inhibitors of the target enzyme. Both series of compounds are toxic in HT-29 and BE human colon cancer cell lines in a clonogenic assay. There was a correlation found between cytotoxicity and DTD activity for the 2-series of phosphoramidates; however, there was no correlation between cytotoxicity and DTD activity in the 3-series of compounds. This finding suggests the presence of an alternative mechanism for the activation of these compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.