Abstract
Serine hydrolases, as a class of green catalysts with hydrolytic and dehydrating activities, hold significant application value in the fields of biosynthesis and organic synthesis. However, practical applications face numerous challenges, including maintaining enzyme stability and managing usage costs. PepNzymes-SH, an emerging green catalytic material with enzyme-like activity, overcomes the operational limitations of natural enzymes and holds great promise as a substitute for hydrolases. Unfortunately, a systematic review of the design strategies for PepNzymes-SH is currently lacking. The core significance of this report lies in providing researchers with a comprehensive understanding and theoretical guidance through the summarization and performance evaluation of different design strategies of PepNzymes-SH. This review summarizes strategies for simulating and enhancing the stability of serine hydrolase active sites, oxyanion holes, and hydrophobic environmental structures. By comparing their catalytic activities, we assess the performance changes brought about by different strategies. Furthermore, the applications of PepNzymes-SH in the chemical, biomedicine, and environmental fields are also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have