Abstract

In-Memory Computing (IMC) has become a promising paradigm for accelerating machine learning (ML) inference. While IMC architectures built on various memory technologies have demonstrated higher throughput and energy efficiency compared to conventional digital architectures, little research has been done from system-level perspective to provide comprehensive and fair comparisons of different memory technologies under the same hardware budget (area). Since large-scale analog IMC hardware relies on the costly analog-digital converters (ADCs) for robust digital communication, optimizing IMC architecture performance requires synergistic co-design of memory arrays and peripheral ADCs, wherein the trade-offs could depend on the underlying memory technologies. To that effect, we co-explore IMC macro design space and memory technology to identify the best design point for each memory type under iso-area budgets, aiming to make fair comparisons among different technologies, including SRAM, phase change memory, resistive RAM, ferroelectrics and spintronics. First, an extended simulation framework employing spatial architecture with off-chip DRAM is developed, capable of integrating both CMOS and nonvolatile memory technologies. Subsequently, we propose different modes of ADC operations with distinctive weight mapping schemes to cope with different on-chip area budgets. Our results show that under an iso-area budget, the various memory technologies being evaluated will need to adopt different IMC macro-level designs to deliver the optimal energy-delay-product (EDP) at system level. We demonstrate that under small area budgets, the choice of best memory technology is determined by its cell area and writing energy. While area budgets are larger, cell area becomes the dominant factor for technology selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.