Abstract

Fuzzy logic controller (FLC) is an important nonlinear controller in an uncertain dynamic parameters. This controller is used to control of nonlinear dynamic systems particularly for spherical motor, because it has a suitable control performance and it is a stable. Conversely pure fuzzy logic controller is a high-quality intelligent nonlinear controller; it has two important problems; reliability and robustness in uncertain dynamic parameter. To increase the reliability and robustness, this research is focused on applied feedback linearization method in pure fuzzy logic controller. In this research the nonlinear equivalent dynamic (equivalent part) formulation problem in uncertain condition is also solved by combine pure fuzzy logic control and feedback linearization method. In this method feedback linearization theorem is applied to fuzzy logic controller to increase the stability, reliability and robustness, which it is based on nonlinear dynamic formulation. To achieve this goal, the dynamic-based formulation feedback linearization method is design. This method is robust and model-based nonlinear control therefore can reduce the nonlinearity term of system and reduce the effect of coupling. In this research MAMDANI fuzzy inference system is used as a main controller. It has minimum rule base to practical implementation. This technique was employed to obtain the desired control behavior with a number of information about dynamic model of system and a feedback linearization control was applied to reinforce system performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call