Abstract

The environment close to the chamber of heavy ion inertial fusion energy reactors imposes severe constraints on magnets used for final focusing magnets. Space is at a premium, requiring close proximity of adjacent magnets, making magnet integration imperative. In addition, the high radiation flux imposes stringent shielding requirements. In this paper, the options for final focusing magnet topologies are described. Implications of using both high-temperature superconductors and conventional low-temperature superconductors are investigated. The use of high-temperature superconducting materials may offer an attractive, although speculative, opportunity for a fundamentally different approach to magnet construction, leading to either lower cost or reduced maintenance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.