Abstract

Several bi-modular hip prostheses exhibit an elevated number of fretting-related postoperative complications most probably caused by excessive micromotions at taper connections. This study investigated micromotions at the stem–neck interface of two different designs: one design (Metha, Aesculap AG) has demonstrated a substantial number of in vivo neck fractures for Ti–Ti couplings, but there are no documented fractures for Ti–CoCr couplings. Conversely, for a comparable design (H-Max M, Limacorporate) with a Ti–Ti coupling only one clinical failure has been reported. Prostheses were mechanically tested and the micromotions were recorded using a contactless measurement system.For Ti–Ti couplings, the Metha prosthesis showed a trend towards higher micromotions compared to the H-Max M (6.5±1.6μm vs. 3.6±1.5μm, p=0.08). Independent of the design, prostheses with Ti neck adapter caused significantly higher interface micromotions than those with CoCr ones (5.1±2.1μm vs. 0.8±1.6μm, p=0.001). No differences in micromotions between the Metha prosthesis with CoCr neck and the H-Max M with Ti neck were observed (2.6±2.0μm, p=0.25).The material coupling and the design are both crucial for the micromotions magnitude. The extent of micromotions seems to correspond to the number of clinically observed fractures and confirm the relationship between those and the occurrence of fretting corrosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.