Abstract

The stem-neck taper interface of bimodular hip endoprostheses bears the risk of micromotions that can result in ongoing corrosion due to removal of the passive layer and ultimately cause implant fracture. We investigated the extent of micromotions at the stem-neck interface and the seating behavior of necks of one design made from different alloys during daily activities. Modular hip prostheses (n = 36, Metha®, Aesculap AG, Germany) with neck adapters (CoCr29Mo6 or Ti6Al4V) were embedded in PMMA (ISO 7206-4) and exposed to cyclic loading with peak loads ranging from walking (Fmax = 2.3 kN) to stumbling (Fmax = 5.3 kN). Translational and rotational micromotions at the taper interface and seating characteristics during assembly and loading were determined using four eddy-current sensors. Seating during loading after implant assembly was dependent on load magnitude but not on material coupling. Micromotions in the stem-neck interface correlated positively with load levels (CoCr: 2.6-6.3 µm, Ti: 4.6-13.8 µm; p < 0.001) with Ti neck adapters exhibiting significantly larger micromotions than CoCr (p < 0.001). These findings explain why high body weights and activities related to higher loads could increase the risk of fretting-induced implant failures in clinical application, especially for Ti-Ti combinations. Still, the role of taper seating is not clearly understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.