Abstract

Shell and tube heat exchangers (STHE) are the most common type of heat exchangers widely used in various kinds of industrial applications. Cost minimization of these heat exchangers is of prime concern for designers as well as for users. Heat exchanger design involves processes such as selection of geometric and operating parameters. Generally, different exchangers geometries are rated to identify those that satisfy a given heat duty and a set of geometric and operational constraints. In the present study we have considered minimization of total annual cost as an objective function. The different variables used include shell internal diameter, outer tube diameter and baffle spacing for which two tube layout viz. triangle and square are considered. The optimization tool used is differential evolution (DE) algorithm, a nontraditional stochastic optimization technique. Numerical results indicate that, DE can be used effectively for dealing with such types of problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.