Abstract

Abstract Owing to the wide utilization of shell and tube heat exchangers (STHEs) in industrial processes, their cost minimization is an important target for both designers and users. Traditional design approaches are based on iterative procedures which gradually change the design and geometric parameters until satisfying a given heat duty and set of geometric and operational constraints. Although well proven, this kind of approach is time-consuming and may not lead to cost-effective design. The present study explores the use of non-traditional optimization technique called hybrid particle swarm optimization (PSO) and ant colony optimization (ACO), for design optimization of STHEs from economic point of view. The PSO applies for global optimization and ant colony approach is employed to update positions of particles to attain rapidly the feasible solution space. ACO works as a local search, wherein ants apply pheromone-guided mechanism to update the positions found by the particles in the earlier stage. The optimization procedure involves the selection of the major geometric parameters such as tube diameters, tube length, baffle spacing, number of tube passes, tube layout, type of head, baffle cut, etc. and minimization of total annual cost is considered as design target. The methodology takes into account the geometric and operational constraints typically recommended by design codes. Three different case studies are presented to demonstrate the effectiveness and accuracy of proposed algorithm. The examples analyzed show that the hybrid PSO and ACO algorithm provides a valuable tool for optimal design of heat exchanger. The hybrid PSO and ACO approach is able to reduce the total cost of heat exchanger as compare to cost obtained by previously reported genetic algorithm (GA) approach. The result comparisons with particle swarm optimizer and other optimization algorithms (GA) demonstrate the effectiveness of the presented method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.