Abstract

Purpose The purpose of this study is to obtain optimum locations, peak deflection and chord of the twin trailing-edge flaps and optimum torsional stiffness of the helicopter rotor blade to minimize the vibration in the rotor hub with minimum requirement of flap control power. Design/methodology/approach Kriging metamodel with three-level five variable orthogonal array-based data points is used to decouple the optimization problem and actual aeroelastic analysis. Findings Some very good design solutions are obtained using this model. The best design point in minimizing vibration gives about 81 per cent reduction in the hub vibration with a penalization of increased flap power requirement, at normal cruise speed of rotor-craft flight. Practical implications One of the major challenges in the helicopters is the high vibration level in comparison with fixed wing aircraft. The reduction in vibration level in the helicopter improves passenger and crew comfort and reduces maintenance cost. Originality/value This paper presents design optimization of the helicopter rotor blade combining five design variables, such as the locations of twin trailing-edge flaps, peak deflection and flap chord and torsional stiffness of the rotor. Also, this study uses kriging metamodel to decouple the complex aeroelastic analysis and optimization problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call