Abstract
A novel matching technique and the field enhancement at the terminals of a bowtie nanoantenna are utilized to develop compact, highly efficient, and flexible thermophotovoltaic (TPV) cells. The bowtie antenna is designed for maximum power transfer to a near infrared band (1 μm to 2.2 μm) of a TPV cell using Indium Gallium Arsenide Antimonide (InGaAsSb). A nano-meter size block of InGaAsSb with a low bandgap energy of 0.52 eV is mounted at the terminals of the antenna. Such a load presents a frequency dependent impedance with a high resistance and capacitance at the desired frequency (180 THz). For maximum power transfer, a high impedance bowtie antenna operating at the anti-resonance mode in conjunction with an inductive stub is realized. The plasmonic behavior of the metal that tends to reduce the antenna size is partially compensated by the extra length needed to achieve the anti-resonance condition. At the desired band, the proposed nanoantenna loaded with InGaAsSb block shows an electric field intensity at the antenna terminals, which is approximately 23.5 times higher than the incident electric field intensity. This feature allows for development of efficient TPV cell and sensitive IR detectors. The infinite array of the bowtie antennas backed by a metallic reflector located at a quarter-wave behind the array is shown to absorb ∼95% of the incident power, which is more than 50% higher than the bulk InGaAsSb TPV cell. A novel configuration of the bowtie nanoantenna array is also presented that allows for collection of DC currents through an almost arbitrary parallel or series configuration of TPV cells without adversely affecting the IR performance of the individual antennas. In this scheme, elements can be arranged to be polarization dependent or independent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.