Abstract

The development of topology optimization (TO) methods gives designers new capabilities. A variety of TO techniques have recently been used in special circumstances to expand the capabilities of generalist techniques on particular niche issues. To achieve more flexible solutions and generalized procedures for most of the problems, hybrid methods are in trend. Hence, in this study, a different application of the Density-Shape-Element Removal method (D-S-ER) has been used to reduce maximum stress while also significantly reducing the weight of the structure, a lifting hook. A raw model was taken into consideration for the procedure. The study's findings show that the suggested strategy can be employed to provide quick and effective solutions by means of optimizing the balance between weight and strength. One of the findings depicts that combining different methods could give flexibility even in well-proven geometry optimization, which is the lifting hook in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.