Abstract

Biodegradable poly(lactic-co-glycolic acid) microspheres (PLGA MSs) are attractive delivery systems for site-specific maintained release of therapeutic active substances into the intravitreal chamber. The design, development, and characterization of idebenone-loaded PLGA microspheres by means of an oil-in-water emulsion/solvent evaporation method enabled the obtention of appropriate production yield, encapsulation efficiency and loading values. MSs revealed spherical shape, with a size range of 10–25 μm and a smooth and non-porous surface. Fourier-transform infrared spectroscopy (FTIR) spectra demonstrated no chemical interactions between idebenone and polymers. Solid-state nuclear magnetic resonance (NMR), X-ray diffractometry, differential scanning calorimetry (DSC) and thermogravimetry (TGA) analyses indicated that microencapsulation led to drug amorphization. In vitro release profiles were fitted to a biexponential kinetic profile. Idebenone-loaded PLGA MSs showed no cytotoxic effects in an organotypic tissue model. Results suggest that PLGA MSs could be an alternative intraocular system for long-term idebenone administration, showing potential therapeutic advantages as a new therapeutic approach to the Leber's Hereditary Optic Neuropathy (LHON) treatment by intravitreal administration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call