Abstract
Ferroptosis, a form of regulated cell death characterized by iron-dependent phospholipid peroxidation, has emerged as a focal point in the field of cancer therapy. Compared with other cell death modes such as apoptosis and necrosis, ferroptosis exhibits many distinct characteristics in the molecular mechanisms and cell morphology, offering a promising avenue for combating cancers that are resistant to conventional therapeutic modalities. In light of the serious side effects associated with current Fenton-modulating ferroptosis therapies utilizing exogenous iron-based inorganic nanomaterials, hijacking endogenous iron could serve as an effective alternative strategy to trigger ferroptosis through targeting cellular iron regulatory mechanisms. A better understanding of the underlying iron regulatory mechanism in the process of ferroptosis has shed light on the current findings of endogenous ferroptosis-based nanomedicine strategies for cancer therapy. Here in this review article, we provide a comprehensive discussion on the regulatory network of iron metabolism and its pivotal role in ferroptosis, and present recent updates on the application of nanoparticles endowed with the ability to hijack endogenous iron for ferroptosis. We envision that the insights in the study may expedite the development and translation of endogenous ferroptosis-based nanomedicines for effective cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.