Abstract

Application of nanosecond pulsed electric field (nsPEF) to living systems is a fast-growing research area with great potential for cancer treatment. Here, we have demonstrated a cellular-level approach applying nsPEF having a pulse width of 50 ns and a frequency of 2 kHz to induce the change in intracellular function and dynamics for two subtypes of breast cancerous cells, that is, estrogen and progesterone-positive (ER+ and PR+) and human epidermal growth factor 2 (HER2) negative MCF-7 cells and highly aggressive drug resistance triple-negative MDA-MB-231 cells. Microscopic monitoring of the field effects in real-time or before and after the application of nsPEF indicated that nsPEF induced different field effects on intracellular function and dynamics in MCF-7 and MDA-MB-231 cells and activated two different modes of cell death, that is, apoptosis in MCF-7 cells and necrosis (or necroptosis) in MDA-MB-231 cells. These two different modes of nsPEF-induced cell death were confirmed based on the following microscopic measurements: 1) autofluorescence intensity and lifetime imaging of nicotinamide adenine dinucleotide (NADH); 2) production of reactive oxygen species (ROS); 3) change in mitochondrial membrane potential; 4) morphological alternation of cells; 5) imaging of phosphatidyl serine (PS) externalization by Annexin V; 6) cell viability. The present finding of nanosecond pulsed electric field-induced apoptosis and necrosis (or necroptosis) in subtypes of breast cancerous cells provides valuable information that the mechanism of field-induced cell death depends on the subtype of cancerous cells. It will be helpful for further development and optimization of field-induced cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call