Abstract

In this study, we have designed and analyzed the electron-hole bilayer (EHB) tunneling field-effect transistors (TFETs) based on various III-V compound semiconductor materials using two-dimensional (2-D) technology computer-aided design (TCAD) simulations. A recently proposed EHB TFET has lower subthreshold swing (S) and higher on-state current (Ion) than the conventional planar TFET, using band-to-band tunneling (BTBT) across the source-to-channel junction. It uses a bias-induced BTBT across the EHB formed by an electric field between the two gates. The III-V compound semiconductors have been applied to the EHB TFETs to improve the switching performances and current drivability owing to their superior material properties such as high electron mobility and high tunneling probability. After the design and analysis of devices based on various compound semiconductors, in terms of primary DC characteristics, a lower bandgap material (InAs) has been inserted in the tunneling region of the In0.53Ga0.47As EHB TFET to enhance the tunneling rate. This paper proposes an EHB TFET that uses vertically stacked InGaAs/InAs/InGaAs layers. Moreover, the design optimization process has been performed via simulations. The simulation results of the proposed EHB TFET show remarkable performances with Ion of 739.6 µA/µm, S of 1.9 mV/dec, and threshold voltage (Vth) of 7 mV at VDS 0.5 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.