Abstract

In this paper, area-efficient Vedic multiplier is designed using modified Carry Select Adder (CSLA). As the multiplication is nothing but subsequent addition process, adder is important block in the design of multiplier. Simple Ripple Carry adder (RCA) can be used for implementing multiplier. Digital adder has problem of carry propagation, thus carry select adder is used instead. Carry select adder is known to be one of the fastest adder structures. Here novel technique that is Vedic multiplier is implemented instead of normal multipliers like add and shift multiplier, array multiplier etc. Here multiplier is designed based on ancient Vedic multiplication technique. The goal of this paper is to design area-efficient Vedic multiplier based on crosswise and vertical algorithms. Conventional CSLA designs are compared with proposed design to prove its efficiency. On an average, modified CSLA has 29 % less area than Binary to Excess one Converter (BEC) based CSLA for different bit widths. Proposed Vedic multiplier is designed using modified CSLA, which has approximately 10 % less area than BEC based Vedic multiplier. It shows improved performance in terms of area. Proposed design is also compared with the Booth multiplier. Proposed multiplier showed more excellent results than Booth multiplier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call