Abstract

To implement high quality tunneling injection quantum dot lasers, effects of primary factors on performance of the tunneling injection quantum dot lasers were investigated. The considered factors were tunneling probability, tunneling time and carriers thermal escape time from the quantum well. The calculation results show that with increasing of the ground-state energy level in quantum well, the tunneling probability increases and the tunneling time decreases, while the thermal escape time decreases because the ground-state energy level is shallower. Longitudinal optical phonon-assisted tunneling can be an effective method to solve the problem that both the tunneling time and the thermal escape time decrease simultaneously with the ground-state energy level increasing in quantum well

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.