Abstract

This work presents a novel technique to develop the three-valued logic (TVL) circuit schematics for very large-scale integration (VLSI) applications. The TVL is better alternative technology over the two-valued logic because it provides decreased interconnect connections, fast computation speed and decreases the chip complexity. The TVL based complicated designs such as half-adder and multiplier circuits are designed utilizing the Pseudo N-type carbon nanotube field effect transistors (CNTFETs). The proposed TVL half adder multiplier schematics are developed in HSPICE tool. Additionally, the delay and circuit area for the half- adder and multiplier circuits are investigated and compared to the complementary circuits. The memory usage and CPU time for the proposed circuits are also analyzed. It is observed that the proposed circuit designs show the improved performance up to 43.03% on an average over the complementary designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.