Abstract

Purpose Because of the logic delay in the converter, the minimum turn on time of the switch is influenced by the constant time. When the inductor current gets to the threshold of the chip, the control signal will delay for a period. This makes the inductor current rising with the increasing of the clock and leads to the load current out of control. Thus, this paper aims to design an oscillator with a variable frequency protection function. Design/methodology/approach This paper presents an oscillator with the reducing frequency applied in the DC-DC converter. When the converter works normally, the operating frequency of the oscillator is 1.5 MHz. So the inductor current has enough time to decay and prevent the power transistor damaging. After the abnormal condition, the converter returns to the normal operating mode automatically. Findings Based on 0.5 µm CMOS process, simulated by the HSPICE, the simulation results shows that the frequency of the oscillator linearly decreases from 1.5 MHz to 380 KHz when the feedback voltage less than 0.2 V. The maximum deviation of the oscillator frequency is only 6 per cent from −50°C to 125°C within the power supply voltage of 2.7-5.5 V. Originality/value When the light load occurs at the output stage, the oscillator frequency will decrease as the load voltage drops. The test results shows that when the circuit works in the normal condition, the oscillator frequency is 1.5 MHz. When the load decreased, the operating frequency is dropped dramatically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.