Abstract

Protein affinity reagents that specifically and strongly bind to target molecules are widely used in disease detection, diagnosis, and therapy. Although antibodies and their fragments are the gold standard in protein-protein inhibitors (PPIs), synthetic polymers such as linear polymers, dendrimers, and nanoparticles as cost-effective PPIs have attracted great attention as alternatives to antibodies. These polymers exhibit high affinity to the target by imitating natural protein-protein interactions. However, only a few in vivo applications have been reported. Here, our recent advances in the development of synthetic polymers for in vivo application are reviewed. Poly(N-isopropylacrylamide) (pNIPAm) was used as a model of synthetic affinity reagents. Incorporation of both sulfated carbohydrate and hydrophobic monomers into lightly crosslinked pNIPAm nanoparticles (NPs) captured and neutralized vascular endothelial growth factor (VEGF) and inhibited tumor growth upon intravenous injection into tumor-bearing mice. Modification of a liposome with the pNIPAm-based linear polymer increased the polymer circulation time after intravenous injection and improved the affinity for the target. The pNIPAm-based NPs delivered by oral administration captured the target small molecules and inhibited their absorption from the intestine. Our recent findings provide useful information for the design of synthetic polymers that capture target molecules in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.