Abstract

This article reports the synthesis, characterization and also the use of surface modified iron oxide nanoparticles in affinity separation of his-tagged protein. Magnetite particles were prepared by simple coprecipitation of Fe3+/Fe2+ in aqueous medium and then subsequently coated with silica following a sol-gel route. Iminodiacetate was immobilized on them through a silane-coupling agent and charged with Ni2+. These Ni2+ charged magnetic silica nanoparticles have been shown as an efficient carrier, binder and anchor to obtain his-tagged protein directly from total cell lysate. The structural characteristics of the powders were studied by XRD. Magnetic silica particles with 12 nm and aggregate size 90 nm containing inverse spinel magnetite core were observed by transmission electron micrograph and dynamic light scattering. The presence of surface-iminodiacetate groups was shown by FTIR and X-ray photoelectron spectra. The immobilization of Ni2+ through the surface chelating iminodiacetate groups was also studied by XPS. VSM measurement shows these iminodiacetate functionalized magnetic carriers have saturation magnetization 56 e.m.u./g at room temperature. Due to its high efficiency, cost-effectiveness, biocompatibility, and versatility, this magnetic nano-adsorbent may be used as a novel purification system for 6xHis-Tagged recombinant proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.