Abstract

Exploring the attainment of half-metallic behavior in two-dimensional (2D) materials through external perturbations is a popular area of current research. In this work, we demonstrate, using first-principles calculations, that bilayer NiI2 (bi-NiI2) is an A-type antiferromagnetic (AFM) semiconductor with an indirect bandgap of 0.86 eV, with the most stable configuration being the AB stacking mode. Upon the application of a vertical electric field, the material transforms from its original semiconducting state into a half-metallic state. Moreover, the spin polarization reverses its orientation whenever the direction of the electric field is altered. This intriguing behavior has inspired us to design a spintronic device based on the A-type AFM bi-NiI2. By employing nonequilibrium Green's function (NEGF) combined with density functional theory (DFT) calculations, we find that the device achieves ON/OFF switching by applying vertical electric fields in parallel or anti-parallel configurations in the two leads. The device displays 100 % spin polarization in the parallel configuration (PC) scenario, driven by bias voltage or temperature differences. Utilizing either the parallel or antiparallel configuration (APC) for ON/OFF switching enables the device to exhibit tunneling magnetoresistance (TMR) of up to 1.45 × 1010 % due to bias voltage and up to 1011 % thermal TMR arising from temperature differences between the leads. These findings highlight the potential of NiI2 and A-type AFM bilayers in the design of spintronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.