Abstract

Abstract Piezoceramic, electrostrictive, and magnetostrictive materials are being increasingly applied in active vibration control and are being investigated for other motion control and damage mitigation applications. Typically, motion ranges required in active vibration control are of the order of a few microns. On the other hand, many mechanical and electromechanical motion control applications require the point of application of the load to move through at least a few millimeters. In this research, a smart ceramic-elastic composite actuator is invented for such motion control applications. The work presented in this paper includes the concept, its illustration, development of a design geometry based on this concept, and its finite element analysis and results. It will be shown that by a proper synthesis of smart structure, a class of such actuators can be successfully designed and realized in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.